RIKEN Isospin Diffusion Experiment

Rachel Hodges Showalter
January 15, 2013

Introduction to Symmetry Energy

- Nuclear EOS relates energy, pressure, temperature, density, and isospin asymmetry (δ) of nuclei:

$$
\begin{aligned}
& E(\rho, \delta)=E(\rho, \delta=0)+E_{\text {sym }}(\rho) \delta^{2} \\
& \delta=\left(\rho_{n}-\rho_{\rho}\right) /\left(\rho_{n}+\rho_{\rho}\right)
\end{aligned}
$$

- Symmetry energy influences
- neutron-skin thicknesses
- neutron star radii, maximum masses, and cooling rates
- One parameterization:

$$
\mathrm{E}_{\text {sym }}(\rho)=S_{0}-L \frac{\rho_{0}-\rho}{3 \rho_{0}}
$$

- Current constraints from HIC weigh
 heavily on isospin diffusion

Isospin Diffusion

- Asymmetric systems $(\mathrm{A}+\mathrm{B})$ move towards isospin equilibrium under the influence of symmetry energy.
- Symmetric systems (A+A; B+B) provide reference values, do not have isospin diffusion
- Isospin transport ratio $R_{i}(X)$

$$
R_{i}=\frac{2 x-\left(x_{A A}+x_{B B}\right)}{x_{A A}-x_{B B}}
$$

- Different amount of isospin diffusion for heavy residues, provide another observable sensitive to symmetry energy

$$
E_{s y m}(\rho)=S_{k}\left(\frac{\rho}{\rho_{0}}\right)^{2 / 3}+S_{i}\left(\frac{\rho}{\rho_{0}}\right)^{\gamma_{i}}
$$

Previous Experiment: e07038

- Investigates the density-dependence of the nuclear symmetry energy
- ${ }^{112,118,124}$ S $n+{ }^{112,118,124}$ Sn Collisions
- Combines the MSU Miniball+WU Miniwall, the LASSA Array, and the S800 Spectrograph
- Goal: extract observables from heavy fragments

Data taken at MSU (Experiment 07038)

- ${ }^{112,118,124} \mathrm{~S} n+{ }^{112,118,124} \mathrm{~S} n$
- $\sim 5 \mathrm{mg} / \mathrm{cm}^{2}$ Targets
- $70 \mathrm{MeV} / \mathrm{u}$ beam energy
- Event rates 200-300/s
- Beam Rate $2^{*} 10^{7} / \mathrm{s}$ to $6^{*} 10^{7} / \mathrm{s}$
- Millions of events:

Beam	Target		
	${ }^{112} \mathrm{Sn}$	${ }^{118} \mathrm{Sn}$	${ }^{124} \mathrm{Sn}$
${ }^{112} \mathrm{Sn} / 43 \mathrm{hr}$	$11.4 \mathrm{M} / 11.2 \mathrm{hr}$	x	$8.7 \mathrm{M} / 11.3 \mathrm{hr}$
${ }^{118} \mathrm{Sn} / 43 \mathrm{hr}$	$3.8 \mathrm{M} / 2.8 \mathrm{hr}$	$10.7 \mathrm{M} / 8.4 \mathrm{hr}$	x
${ }^{124} \mathrm{Sn} / 43 \mathrm{hr}$	$12.3 \mathrm{M} / 10.6 \mathrm{hr}$	$10.1 \mathrm{M} / 9.5 \mathrm{hr}$	$15.2 \mathrm{M} / 10 \mathrm{hr}$

S800 Spectrometer Analysis (Experiment 07038)

- S800 analysis relies on $\Delta \mathrm{E}$ vs. TOF data (analogous to Z vs. Q / A) to separate fragment isotopes
- Better isotopic resolution using position correction of fragments
- Will probably not separate charge states
- Select Z, A regions with Bp settings in magnet
- Wanted 5-6 Bp settings per beam but did not have enough time
- Chose 2-3 Bp regions further from beam

RIKEN Experimental Plan

- Primary beam: ${ }^{124} \mathrm{Xe}$ (10-30 pnA)
- Detect residues: have larger cross sections than the light fragments previously measured, so we can use unstable beams and increase δ difference
- No ${ }^{124} \mathrm{Sn}$ beam because there is no ${ }^{132} \mathrm{Xe}$ primary beam
- ${ }^{108} \mathrm{Sn},{ }^{112} \mathrm{Sn}$ beams at $73 \mathrm{MeV} / \mathrm{U}$
- ${ }^{112} \mathrm{Sn},{ }^{124} \mathrm{Sn}$ targets at $\sim 50 \mathrm{mg} / \mathrm{cm}^{2}$
- Expect event rates $<100 / \mathrm{s}$

	Target	
	${ }^{112}$ Sn	${ }^{124} \mathrm{Sn}$
${ }^{108} \mathrm{Sn}$	~ 18 hours	~ 19 hours
${ }^{112} \mathrm{Sn}$	~ 14 hours	~ 15 hours

BigRIPS

Zero Degree Spectrometer

${ }^{112}$ Sn Beam Calculations

- ${ }^{112}$ Sn profile at target
- 97.8\% purity
- $3 \mathrm{e}+6 \mathrm{pps}$

F7 slit-Xspace: output before slits
${ }^{124} \mathrm{Xe}(345.0 \mathrm{MeV} / \mathrm{u})+\mathrm{Be}(9.45 \mathrm{~mm})$; Settings on ${ }^{112} \mathrm{~S} \mathrm{n}^{50+50+50+50+50+50+50+50+\text {; Config: DSSSWDSSMMMDDMNSMDDMSMMA }}$ dp ip $=0.47 \%$; Wedges: Al (3.5 mm), Al (2 mm); Brho(Tm): 5.0859, 4.0046, 3.9443, 3.9443, 2.8540, 2.8540
alclarge states seprar
tin or reat

${ }^{108}$ Sn Beam Calculations

- ${ }^{108}$ Sn profile at target
- 83.7\% purity
- $1 \mathrm{e}+6 \mathrm{pps}_{\text {百 }}$

Experimental Setup: Overview

Zero Degree Spectrometer Analysis

- Fragments predicted to be emitted within 2.5°
- 5-6 magnetic settings used to obtain residue fragments (avoid beam charge states)
- May need to decrease number of settings due to time
- Detect Bp, time at F3, F5, F7
- TOF (from 3 to 7), $\Delta \mathrm{E}$ at $\mathrm{F7}$-> $\mathrm{Z}, \mathrm{A} / \mathrm{Q}$
- Correct PID using track reconstruction through beamline, gives Bp of fragment

Microball Analysis

- Determination of b using N_{c}
- Requires downstream scintillator to normalize beam counts

Chamber

Chamber: bottom plate design

To ZeroDegree

 SpectrometerScintillator, on platform with drive

Preparation To Be Completed

- Microball Mount Design
- Microball should be centered on beamline (splitting rings apart)
- Platform mounts to center flange
- Target drive mechanism moves from underneath
- Attach collimator on platform
- Sn Target Ladder Design
- Moves between the two halves of microball
- Need enough room below microball platform for ladder length to move in/out of beamline
- Rachel will roll out targets this week
- Scintillator/beam counter downstream of target
- Design of movable platform
- Need to buy two target mechanisms, remote controlled

Preparation To Be Completed, continued

- Cables:
- Length depends on position of microball, scintillator and distances to flanges
- May need cable extenders for microball
- Electronics
- WU preamps mounted outside chamber
- Adapters for flanges: based on cables used, designs of microball and scintillator platforms, preamps mounted to outside
- Machining:
- Microball platform mount
- Scintillator platform
- Flange adaptors as needed

Rough Timeline

- February 15: finalize the design of the inside of chamber
- March 1: finalize design of target ladder
- April 1: start to order machining and other devices
- April 1: start to test electronics
- May 7: start to mount the detectors in chamber
- May 27: ready to install vacuum chamber to F8, check alignment. (Need to move the date in view of new schedule)
- June 10-15: Experiment runs (official as of Jan. 28)
- June 27: User Meeting

