RIKEN Isospin Diffusion Experiment

Rachel Hodges Showalter January 15, 2013

Introduction to Symmetry Energy

• Nuclear EOS relates energy, pressure, temperature, density, and isospin asymmetry (δ) of nuclei:

$$\begin{split} E(\rho,\,\delta) &= E(\rho,\,\delta{=}0) + E_{sym}(\rho)\delta^2\\ \delta &= (\rho_n{-}\rho_p)/(\rho_n{+}\rho_p) \end{split}$$

- Symmetry energy influences
 - neutron-skin thicknesses
 - neutron star radii, maximum masses, and cooling rates
- One parameterization:

$$E_{\text{sym}}(\rho) = S_0 - L \frac{\rho_0 - \rho}{3\rho_0}$$

• Current constraints from HIC weigh heavily on isospin diffusion

Isospin Diffusion

- Asymmetric systems (A+B) move towards isospin equilibrium under the influence of symmetry energy.
- Symmetric systems (A+A; B+B) provide reference values, do not have isospin diffusion
- Isospin transport ratio R_i(X)

$$R_{i} = \frac{2x - (x_{AA} + x_{BB})}{x_{AA} - x_{BB}}$$

 Different amount of isospin diffusion for heavy residues, provide another observable sensitive to symmetry energy

$$E_{sym}(\rho) = S_k \left(\frac{\rho}{\rho_0}\right)^{2/3} + S_i \left(\frac{\rho}{\rho_0}\right)^{\gamma_i}$$

Previous Experiment: e07038

- Investigates the density-dependence of the nuclear symmetry energy
- ^{112,118,124}Sn+ ^{112,118,124}Sn Collisions
- Combines the MSU Miniball+WU Miniwall, the LASSA Array, and the S800 Spectrograph
- Goal: extract observables from heavy fragments

Data taken at MSU (Experiment 07038)

- ^{112,118,124}Sn + ^{112,118,124}Sn
- ~5 mg/cm² Targets
- 70 MeV/u beam energy
- Event rates 200-300/s
- Beam Rate 2*10⁷/s to 6*10⁷/s
- Millions of events:

	Target		
Beam	¹¹² Sn	¹¹⁸ Sn	¹²⁴ Sn
¹¹² Sn / 43hr	11.4M/11.2hr	X	8.7M/11.3hr
¹¹⁸ Sn / 43hr	3.8M/2.8hr	10.7M/8.4hr	x
¹²⁴ Sn / 43 hr	12.3M/10.6hr	10.1M/9.5hr	15.2M/10hr

S800 Spectrometer Analysis (Experiment 07038)

- S800 analysis relies on ΔE vs. TOF data (analogous to Z vs. Q/A) to separate fragment isotopes
- Better isotopic resolution using position correction of fragments
- Will probably not separate charge states
- Select Z, A regions with Bp settings in magnet
- Wanted 5-6 Bp settings per beam but did not have enough time
- Chose 2-3 Bp regions further from beam

RIKEN Experimental Plan

- Primary beam: ¹²⁴Xe (10-30 pnA)
- Detect residues: have larger cross sections than the light fragments previously measured, so we can use unstable beams and increase δ difference
- No ¹²⁴Sn beam because there is no ¹³²Xe primary beam
- ¹⁰⁸Sn, ¹¹²Sn beams at 73 MeV/U
- ¹¹²Sn, ¹²⁴Sn targets at ~50 mg/cm²
- Expect event rates <100/s

	Target		
Beam	¹¹² Sn	¹²⁴ Sn	
¹⁰⁸ Sn	~18 hours	~19 hours	
¹¹² Sn	~14 hours	~15 hours	

BigRIPS

Zero Degree Spectrometer

¹¹²Sn Beam Calculations

- ¹¹²Sn profile at target
- 97.8% purity
- 3e+6 pps

¹⁰⁸Sn Beam Calculations

- ¹⁰⁸Sn profile at target
- 83.7% purity

Experimental Setup: Overview

Zero Degree Spectrometer Analysis

- Fragments predicted to be emitted within 2.5°
- 5-6 magnetic settings used to obtain residue fragments (avoid beam charge states)
 - May need to decrease number of settings due to time
- Detect Bp, time at F3, F5, F7
- TOF (from 3 to 7), ΔE at F7 -> Z, A/Q
- Correct PID using track reconstruction through beamline, gives Bp of fragment

Microball Analysis

- Determination of b using N_c
- Requires downstream scintillator to normalize beam counts

Chamber

Chamber: bottom plate design

Preparation To Be Completed

- Microball Mount Design
 - Microball should be centered on beamline (splitting rings apart)
 - Platform mounts to center flange
 - Target drive mechanism moves from underneath
 - Attach collimator on platform
- Sn Target Ladder Design
 - Moves between the two halves of microball
 - Need enough room below microball platform for ladder length to move in/out of beamline
 - Rachel will roll out targets this week
- Scintillator/beam counter downstream of target
 - Design of movable platform
- Need to buy two target mechanisms, remote controlled

Preparation To Be Completed, continued

- Cables:
 - Length depends on position of microball, scintillator and distances to flanges
 - May need cable extenders for microball
- Electronics
 - WU preamps mounted outside chamber
- Adapters for flanges: based on cables used, designs of microball and scintillator platforms, preamps mounted to outside
- Machining:
 - Microball platform mount
 - Scintillator platform
 - Flange adaptors as needed

Rough Timeline

- February 15: finalize the design of the inside of chamber
- March 1: finalize design of target ladder
- April 1: start to order machining and other devices
- April 1: start to test electronics
- May 7: start to mount the detectors in chamber
- May 27: ready to install vacuum chamber to F8, check alignment. (Need to move the date in view of new schedule)
- June 10-15: Experiment runs (official as of Jan. 28)
- June 27: User Meeting